arXiv:2006.00086v1 [eess.IV] 29 May 2020

Synthesizing lesions using contextual GANs improves
breast cancer classification on mammograms

Eric Wu Kevin Wu William Lotter
DeepHealth, Inc. DeepHealth, Inc. DeepHealth, Inc.
Cambridge, MA Cambridge, MA Cambridge, MA

eric.wu@deep.health kevin.wu@deep.health lotter@deep.health
Abstract

Data scarcity and class imbalance are two fundamental challenges in many machine
learning applications to healthcare. Breast cancer classification in mammography
exemplifies these challenges, with a malignancy rate of around 0.5% in a screening
population, which is compounded by the relatively small size of lesions (~1%
of the image) in malignant cases. Simultaneously, the prevalence of screening
mammography creates a potential abundance of non-cancer exams to use for
training. Altogether, these characteristics lead to overfitting on cancer cases, while
under-utilizing non-cancer data. Here, we present a novel generative adversarial
network (GAN) model for data augmentation that can realistically synthesize and
remove lesions on mammograms. With self-attention and semi-supervised learning
components, the U-net-based architecture can generate high resolution (256x256px)
outputs, as necessary for mammography. When augmenting the original training set
with the GAN-generated samples, we find a significant improvement in malignancy
classification performance on a test set of real mammogram patches. Overall, the
empirical results of our algorithm and the relevance to other medical imaging
paradigms point to potentially fruitful further applications.

1 Introduction

Common to many machine learning applications in healthcare, developing algorithms for breast
cancer detection in mammography [10, [13} 14,7, [17,18, 9. [1 1] is heavily prone to overfitting given
the difficulty in collecting large amounts of positive examples. A malignancy prevalence of around
0.5% in a screening population leads to a stark class imbalance, which is exacerbated by the fact that
malignant lesions can be subtle and typically only occupy a small area relative to the surrounding
normal-appearing breast tissue. On the other hand, non-malignant mammograms can be relatively
abundant, but tend to be underutilized in machine learning approaches, as overfitting can occur rapidly
on the cancer examples during training. Given the success of standard data augmentation strategies
in combating overfitting, recently there have been numerous efforts exploring the use of generative
adversarial networks (GANs) [18] for data augmentation [23| 24, 25, 126l [27]. While baseline
GAN-augmented training methods may not be effective for natural images [28], mammography
specifically lends itself well to structured approaches [12]]. Here, we present a novel GAN model
designed to synthesize and remove lesions on mammograms. Importantly, instead of creating new
training examples from scratch, the approach relies on the biological intuition that lesions can
develop approximately uniformly across breast tissue. Given the context of surrounding tissue, the
proposed model is able to realistically generate and remove lesions. We demonstrate that, as a data
augmentation procedure, the approach leads to a meaningful boost in classification performance for
the presence of breast cancer in mammogram image patches.

The paper is structured as follows. We begin by describing the architecture of our proposed contextual
GAN. Using a series of optimized components, we demonstrate that the model is capable of generating
high resolution (256x256px) mammogram patches, where lesions are either generated on or removed
from surrounding tissue. Next, we illustrate the effect of including the GAN-outputted patches in a
training set of mammogram patches, where a ResNet-50 [21] classifier is used to classify the presence
or absence of cancer in the patches. Testing on a set of held-out real patches, we find that the GAN
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Figure 1: Examples of synthesized and removed lesions by the proposed GAN architecture. Each
pair of images represents a real image (left) and the synthetic counterpart (right). Each row represents
a different synthesis task. Zooming is encouraged for viewing the synthesized calcifications (row 2).

augmentation leads to improved performance for a range of real/generated sampling ratios. Finally,
we visualize the feature embeddings of the real and generated data to gain further insight into the
realized results.

2 Proposed Contextual GAN Architecture

Figure [2] describes the architecture of the proposed generator network. The model uses a U-net [16]
design, which encodes the input image and generates (or removes) lesions using skip connections
from the intermediate encoding layers. The generator takes as input an image with size 256x256px,
and consists of an encoding (blue bars in Figure [2) network and a decoding network (in yellow).
The encoding component starts with 16 filters at the first convolutional layer block, and doubles the
number of filters and halves the spatial resolution per block. Each block consists of a concatenation
of the input to the block and a random scalar value (drawn uniformly from [-1,1] and reshaped to a
1x1 pixel and resized to match the input dimensions), followed by a convolutional layer with stride
size of 2 and 3x3 kernel, and a LeakyReLU [[13]] activation function. Akin to other GAN approaches,
the random scalar value is used as a sampling procedure to allow the generator to produce a variety
of options given one input image. At the 32x32 resolution, we use a self-attention module [4]], which
is also used in the encoding part of the generator and discriminator. At the central layer of the
generator, a 4x4x2048 tensor is compressed into a 1x1x4 embedding, which forms the input for the
decoding part of the generator. Each decoding block consists of concatenating the skip connection
and random scalar value to the input, followed by an up-sampling operation (nearest neighbor)
and two convolutional layers (with ReLU activation). The output of the final block at 256x256px
resolution is passed through a final 1x1 convolutional layer, followed by a 10px border cropping
and clipping of values within [-1.0, 1.0]. The resulting output is then added to the original input
image (described in more detail below). The discriminator is identical to the encoding part of the
generator, but with 8x the number of filters per layer and strides of 2 replaced with max pooling
operations. We train separate models for generating masses, calcifications, and removing lesions.
While we experimented with a conditional formulation, where one central model was used along with
a category-specific input label, we found that training separate models proved to be the most stable.
We describe additional architectural details below, along with the training and loss formulations.

Separate lesion and image channels. A unique feature of the proposed generator is that the neural
network output only synthesizes the lesion. This lesion is then added to the input image to form the
combined output image. The lesion, input, and combined images are concatenated to form a final
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Figure 2: The GAN generator architecture. In (a), the input image (i) is fed into the generator, which
produces the output (ii) that is added with (i) to produce the finalized synthetic patch (iii). The
diagram (b) describes the generator architecture. The discriminator is essentially the encoding part of
the network, but with 8x the number of filters at each layer and max pooling instead of strides of 2.

three-channel output image. This approach greatly stabilizes the training process by allowing the
generator to focus on just synthesizing the lesion. Additionally, we apply several post-processing
steps to the lesion channel (as described below in "Synthesizing dataset") to further refine the output.

Semi-supervised training loss. To further encourage malignant features to be generated in the
samples, we utilize a semi-supervised loss formulation [[I]]. We extend the binary cross entropy loss
of [real (malignant), fake (malignant)] to include benign and normal patches as well for a four-way
output of [real, fake, benign, normal]. This approach allows the discriminator to penalize examples
containing benign or normal features. During training, the discriminator is given examples of all four
classes for each update step, with the losses from benign and normal examples scaled by a factor of
0.2. For additional stability, a gradient penalty was added to the discriminator loss as detailed in [6]:

A Epnproars~v (o) [[|VaDo(z + 9)|| — k)?
where A = 10, and k = 1.

Progressive growing. Generating patches at 256x256px resolution in one shot results in frequent
mode collapse, so we used progressive growing [2] from 128px to 256px, which achieved
significantly more stable and high quality results. The generator is first trained to produce images at
128px resolution. Then, a new layer is appended to the generator to produce images at 256px. We
slowly fade in the new layer by doubling the resolution of the previous 128px layer using nearest
neighbor and linearly blending with the 256px layer. Over 3000 iterations, the weight on the 128px
layer decreases from 1 to 0 while the weight of the 256px increases from O to 1. The discriminator
follows an identical but reversed scheme.

Self-attention module. We used self-attention [4]] modules in both the generator and discriminators,
as well as spectral normalization [5]]. Self-attention has been shown [4] to improve recognition of
long-range dependencies and utilize features from the entire patch.

Border cropping. A 10px border around the generated lesion mask is cropped out to smooth border
artifacts. We find that this technique alone is effective in matching the features of the input image,
and that common techniques like L1 loss or perceptual loss are unnecessary.



Figure 3: Demonstration of GAN synthesis on contiguous boxes in a mammogram. A section of a
normal mammogram with five 256x256px patches in a row is selected for augmentation to illustrate
how the GAN works in varying contexts (above). The GAN synthesizes a lesion onto each patch, and
the patches are then reinserted back into the mammogram (below).

Training details. We use the Adam [3]] optimizer with a learning rate of 1le~?, and 5; = 0.0,
Ba = 0.99, € = 1le~? for both the generator and discriminator. For masses, we train the generator
twice for every one iteration of the discriminator for better convergence. Images are clipped to a
[—1, 1] pixel value range.

3 Experiments

Dataset details. For training and evaluation, we use the Optimam Mammography Image Database
[20], a publicly obtainable dataset from a large screening population in the UK. Our dataset contains
8,282 images with a malignant lesion, 1,287 images with a benign lesion, and 16,887 normal
studies. The data is split into 60%/20%/20% training/validation/testing splits. Approximately half
of the cancer and benign cases contain radiologist-annotated bounding box labels. From these full
images, we generated patches according to the following quantities: for training, we created 400,000
normals, 42,280 malignant masses, 3,500 benign masses, 24,100 malignant calcifications, and
6,580 benign calcifications from full images in the training split; for validation and testing (each),
we created 1,000 normals, 1,000 malignant masses, and 1,000 malignant calcifications from full
images in the validation and testing splits. To create patches, a random location is picked on a
random mammogram image that contains at least 90% breast tissue. Then, the patch is randomly
flipped (left/right), rotated (90, 180, or 270 degrees), and resized (uniformly from 0.8 to 1.2x) for
augmentation. To specifically create patches containing malignant lesions, a random pixel on the
lesion is chosen, and then a random x and y offset is chosen between 0 to 128 pixels in either direction.

Synthetic dataset. To create a synthetic lesion example, we follow the following procedure:

1. Randomly sample a healthy mammogram image.

2. Randomly sample a 256x256px patch that contains more than 90% breast tissue.



Training Regime AUC P-value
Baseline 0.829 -
10% w/ decay 0.837 0.10
25% w/ decay 0.839 0.055
50% w/ decay 0.846 le-4
75% w/ decay 0.828 0.72
100% w/decay 0.797 le-8

Table 1: Experimental results comparing model performance with and without GAN-augmented data.
A baseline model trained on only real images is run alongside models given varying starting rates
of GAN-augmented training examples. The highest performing GAN-augmented model yielded an
improvement of 0.017 AUC over the baseline.

3. Input the patch into the generator and generate the synthetic patch.
4. Perform the following steps to post-process the synthetic patch:

Isolate the lesion channel in the synthetic patch.

Create a binary mask of the channel by applying a threshold of 0.1.

Use connected-component labeling and pick the largest object in the binary mask.
Discard the object if it is too small (< 10% of the patch area).

Expand the edges of the object by 5px.

Apply a 10px Gaussian smoothing filter to the edge of the object.

Element-wise multiply the resulting mask with the lesion channel.

5. Add the lesion channel to the base normal patch.

We found that the post-processing steps removes background noise from the image while still
retaining the relevant synthetic lesion. For removing lesions from malignant mammograms, we apply
the same steps but use a < —0.1 binary pixel threshold. The extracted lesion is then treated as a
"negative lesion’, which when added back into the input image removes the lesion. To create our
synthetic training dataset, we generated 5000 examples each of mass, calcification, and normal
patches.

Patch Classifier Training. For a patch classification model, we use ResNet-50 [21]], initialized with
weights trained from ImageNet. We train the ResNet-50 for a binary cancer/no-cancer task using
different proportions of synthetic data compared to real data. In each case, positive and negative
examples are sampled with equal probability. Models are trained for S00K samples, using the Adam
optimizer [22] with a learning rate le-5, 51 = 0.9, and 85 = 0.999. We train with a batch size of
one, so each training step consists of one training sample. When including synthetic data, an initial
proportion is chosen, and then decayed by 10% every 5000 training samples. A decay was used to
mimic a “fine-tuning” scenario, where the model was trained on larger proportions of real data over
time. For initial proportions of synthetic data, we use 0% (all real), 25%, 50%, 75%, and 100%.
In each case, the final weights are chosen based on performance on the validation set (all real), as
evaluated every 5000 samples.

Results. The results of our experiments are shown in As the percentage of synthetic data
initially is increased, test performance on real data rises to a peak of 0.846 AUC at a 50% initial
synthetic rate (compared to 0.829 AUC trained only on real data; p < le — 8). The improvement
in performance was significant for rates of 10%, 25%, and 50%. Beyond a 50% initial synthetic
rate, the test performance on real data declines. P-values are computed using the DeLLong method [19].

t-SNE Embedding. To better understand how the real and synthetic data are clustered and the effect
of the augmented model, we performed a t-SNE embedding analysis. From the validation data, we
sampled 2000 normal, 1000 real malignant mass, 1000 real malignant calcifications, 3560 synthetic
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Figure 4: A plot of the t-SNE embedding using the last feature layer of the ResNet-50 classifier,
trained only on real mammogram patches. The red points represent real normal examples, the orange
points represent real malignant calcifications, the green points represent real malignant masses,
the blue-green points (bottom) represent synthetic malignant masses, and the blue points represent
synthetic malignant calcifications (top). As illustrated, the embeddings for the synthetic lesions
cluster with real lesions, even using the embeddings from a classifier trained on only real lesions.

malignant mass, and 4000 synthetic malignant calcifications patches. We inputted each patch through
the baseline ResNet-50 model trained only on real patches to obtain a feature vector, using the last
feature layer in the model. A two-dimensional t-SNE embedding plot using these features is shown
in Fig. @] A first feature to note is that the normal patches appear clustered away from the real mass
and real calcifications patches. This is to be expected, given that the ResNet-50 model was trained on
real data. Interestingly, the synthetic mass and calcifications patches are also clustered away from the
normal patches and generally overlap with the real lesion patches in the embedding. While it may
be expected that this would be the case, it is not guaranteed and provides further support that the
GAN is generating features that are consistent with real lesions, as dictated by the features learned to
distinguish between normal and malignant patches. In the appendix, we also illustrate how several
real false negatives that are originally clustered towards the real patches in the embedding become
correctly classified and subsequently cluster towards the real lesions after GAN-augmented training

(Fig. ).
4 Discussion

Deep learning for cancer classification in mammography has shown promising progress, yet data
scarcity and class imbalance is still a significant roadblock to its continued progress. In this paper
we explore the use of GANSs as a data augmentation technique for classification networks. Using a
U-net based architecture with self-attention and semi-supervised learning, we synthesize lesions
onto normal-appearing mammogram patches and remove lesions from patches where they are
present. We demonstrate that incorporating synthetically augmented mammogram patches into the
training regime improves overall model performance. Without additional data or any changes to the
underlying architecture, the GAN-augmented regime produced an AUC of 0.846, 0.017 greater than
the baseline. Through visualizing a t-SNE embedding of the last classifier layer, we observe that
the synthetic data distribution covers and expands upon the original training data distribution. As a
future step, we aim to extend our GAN formulation toward improving full image object detection



networks by reinserting synthetic patches back into the full image and providing the bounding box for
localization. Code will be made available on Github before publication. Overall, our contextual GAN
model and data augmentation results show promise for rectifying data imbalance in mammography,
and can be adapted to address similar issues in other medical imaging domains.
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Figure 5: Using the t-SNE embedding from Figure fi] we highlight five misclassified malignant
examples (in dark blue). (a) displays the proximity of these points to the normal cluster from the
embedding produced by the baseline model. (b) shows the same points moving toward the malignant
clusters and away from the normal cluster when using the embedding produced by the augmented
model and increase in malignant classification score by an average of 0.32.
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Figure 6: Image patches containing malignant lesions referenced by the blue data points in Figure [5]
These patches scored low ("'normal’) with the baseline model, but scored high (’malignant’) with the
augmented model.
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